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Explore task sampling periods with MIGP, while
using simulations to estimate control performance.
lterate between task allocation/scheduling and

Trade-off among system extensibility, fault tolerance and communication cost

Define system-level metrics on extensibility, fault tolerance (error coverage) and communication cost (total path latency).
* Simulated annealing based optimization with parameterizable objective function.

» Efficiently estimate the timing complexity of subcomponents.
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