
CAREER: SOlSTICe: Software Synthesis with Timing Contracts for Cyber-Physical Systems
CCF-1553757, 1/15/2016 – 12/31/2020, Qi Zhu, University of California, Riverside

Timing	Challenges	in	Software	Synthesis
• Timing behavior affects functional correctness and many design metrics.
• Synthesis of CPS software faces timing-related challenges:

² Diversity of timing requirements from different design metrics,
² Complexity of timing analysis, and
² Uncertainty of timing behavior from dynamic environment.

• Timing constraints are often set in an ad-hoc fashion.
• Lack of holistic consideration of timing through synthesis process.

SOISTICe Framework

A1. Multi-metric Co-design with Horizontal Timing Contracts Exploration
• Explore timing constraints while trading off multiple design metrics.
• Identify critical timing factors for co-design and choose right formalism.
• Develop co-design algorithms for design space exploration.
A2. Hierarchical Design Refinement with Vertical Timing Contracts
• Assign timing “budget” for lower-level components during refinement.
• Represent timing behavior and constraints across system hierarchy.
• Efficiently estimate the timing complexity of subcomponents.

• Develop interactive task synthesis approaches: 1) quick assessment of
feasibility and bottlenecks, 2) partial synthesis under incomplete
constraints, and 3) additive synthesis under updated constraints.

• Task synthesis of heterogeneous and hierarchical functional models.

Theme	B:	Timing-centric	Holistic	Task	Generation	and	Mapping

• Timing contracts modeling and monitoring during co-simulation.
• Explicit and modular representation of task synthesis options.
• Integration of simulation and analytical algorithms.

Theme	C:	Function-Architecture	Co-simulation	with	Contracts	

Scientific	Impacts
• Explore timing constraints quantitatively throughout the software

synthesis process to produce correct, efficient, and predictable CPS
software implementation.

• Develop new methodologies for timing contracts definition and
exploration, novel algorithms for timing-centric task generation and
mapping, and a simulator with explicit timing contracts evaluation.

• Use automotive and transportation systems as primary case studies
and provide new tools for automotive software development.

Broader	Impacts	and	Education
• Enable fundamental advances in design automation methods and

tools for cyber-physical systems.
• Establish close industry collaborations and facilitate potential

technology transfer.
• Leverage research findings to build an interdisciplinary education

program for K-12, undergraduate, and graduate students: 1)
outreaching to K-12 schools with Lego Mindstorm, 2) extending
undergrad embedded systems course and advising senior design
projects, 3) developing new graduate course on CPS, and 4) writing
a textbook in collaboration with industry.

PI:	Qi	Zhu	(qzhu@ece.ucr.edu)	

Industry	Collaborators:

Theme	C:	Control	Performance	and	Schedulability		Co-design	with	
Simulations	in	Ptolemy	

Theme	A:	Co-design	and	Design	Refinement	with	Timing	Contracts
Co

m
bi
ne

d	
M
od

el
s Timing	Budget

AVR	Task

Ex
ec
ut
io
n	
Ti
m
e	

M
od

el
s

Execution	Curve

Execution	Time	
Periodically	Changing

Multi-frame

Fixed-WCET

Ac
tiv
at
io
n	

M
od

el
s

Activation	Curve

Mixed-Activation

Periodic	Activation

𝑣"

Timing	Model	Tree
• Specific models can be converted to
more general models on parent nodes.

• Facilitate integration and synthesis of
heterogeneous (task) components via
conversions to the unified model on
their common ancestor node.

• Timing model tree can be extended to
functional layer.

Cross-Layer	Co-Design
• Timing contracts can be defined and
explored based on timing model tree.

• Explore task activation model and time
budget, together with task generation,
allocation and scheduling.

• Address safety, performance, security,
fault tolerance and extensibility .

Theme	A:	Analysis	of	Timing Models	for	Contract	Formalism Theme	B:	Task	Generation	and	Mapping	with	Consideration	of
Extensibility,	Fault Tolerance and Communication Cost

• Bowen	Zheng,	et	al.,	“Timing	and	Security	Analysis	Framework	for	VANET-based	Intelligent	Transportation	Systems”,	ICCAD,	2017.
• Hongjia Li,	et	al.,	“Deep	Reinforcement	Learning:	Framework,	Applications,	and	Embedded	Implementations”,	ICCAD,	2017.
• Bowen	Zheng,	et	al.,	“Delay-Aware	Design,	Analysis	and	Verification	of	Intelligent	Intersection	Management”,	SMARTCOMP,	2017.
• Yongxing Bao,	et	al.,	“Quantitative	Performance	Evaluation	of	Uncertainty-Aware	Hybrid	AADL	Designs	Using	Statistical	Model	

Checking”,	TCAD,	2017.

Trade-off among system extensibility, fault	tolerance and	communication	cost	

CPU

CPU

CPU

CPU

Bus

Bus
t3

t4 t5

t1 t2

Runnable	Synthesis Task	Synthesis

• Qi	Zhu,	et	al.,	“Extensibility-Driven	Automotive	In-Vehicle	Architecture	Design”,	DAC,	2017.
• Hengyi Liang,	et	al.,	"Addressing	Extensibility	and	Fault	Tolerance	in	CAN-based	Automotive	Systems”, NOCS, 2017.
• Tianshu Wei,	et	al.,	“Deep	Reinforcement	Learning	for	HVAC	Control	in	Smart	Buildings”,	DAC,	2017.
• Mingsong Chen,	et	al.,	“Sustainability- Oriented	Evaluation	and	Optimization	for	MPSoC Task	Allocation	and	Scheduling	Under	Thermal	and	

Energy	Variations”,	TSUSC,	2017.

Industrial case study:
• 58 subsystem block, 5 inputs,

and 10 outputs.
• Two	heuristics	based	on	

optimizing	extensibility	
(Ext_Run)	and	optimizing	
schedulability	(Sched_Run).

• Ext_Run provides	slightly	better	
runnable-level	extensibility	and	
similar	schedulability,	when	
compared	with	Sched_Run.(a) (a)

• Define	system-level metrics	on	extensibility, fault	tolerance	(error coverage) and communication	cost	(total	path latency).
• Simulated	annealing	based	optimization	with	parameterizable objective	function.
• Clear	trade-off	between	extensibility	and	communication	cost,	and	between	fault	tolerance	and	communication	cost.

Simulation engine

5 10 15 20 25 30

2

4

6

8

10

Modularity (Number of Runnables)

S
ch

e
d

u
la

b
ili

ty
 m

e
tr

ic

Ext_Run

Sched_Run

5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Modularity (Number of Runnables)

E
xt

e
n

si
b

ili
ty

 m
e

tr
ic

Ext_Run

Sched_Run

Controller output Sampling period

pe
rfo

rm
an

ce

• Integrate simulation with analytical optimization.
• Explore	task	allocation	&	scheduling	with	heuristics.
• Explore	task	sampling	periods	with	MIGP,	while	

using	simulations	to	estimate control performance.
• Iterate	between	task	allocation/scheduling	and	

period	optimization.

Input Task	Allocation	
Scheduling Period	Optimization Output

Task	re-allocation
and	scheduling

Ptolemy	
simulation

MIGP	solver

End？

Estimate	period	
bound

Initial	allocation	
and	scheduling

	Task	set,	
computing	
resouces

Assignment,
Period,

scheduling

YesNo


